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Moving fronts for complex Ginzburg-Landau equation with Raman term
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Moving fronts, or optical shock-type solitons, are discussed for systems with gain and loss under the
influence of the Raman effect. We present energy and momentum segment balance equations and establish the
exact moving front solutions. We also show here that stationary and moving fronts also exist when we allow
for various other nonlinear terms in the modified Ginzburg-Landau equaBd063-651%98)09611-1

PACS numbeps): 42.65.Tg

I. INTRODUCTION terms. Other cases can also be considered and exact solutions
can be found.
The nonlinear Schiinger equation(NSE) is a model
equation describing a variety of short-pulse propagation phe- Il. FUNDAMENTAL EQUATION
nomena in optic§l,2]. The NSE with nonconservative terms ] ) ) ) ) .
added is usually called the complex Ginzburg-Landau equa- FOr @ fieldy(z,7) in a fiber with nonlinearityN, we may
tion (CGLE). Particular areas of application of the CGLE are Write the modified NSE in the following form:
all-optical fiber transmission lines and passively mode- D
locked fiber and solid-state lasers. The NSE can be modified i+ 5 Yt YN([¢]?)=0. @)
to include the influence of various physical phenomena on 2

short-pulse generation and propagation. The behavior OI£|ere D, the group delay dispersion coefficient, is positive

ultra-short pulses changes under the influence of these termfs. . ; . >
. : . . or anomalous dispersion, and negative for normal disper-
For example, third-order dispersion results in pulse asymme-

" ) . sion. When we introduce the nonlinear and nonconservative
try and radla}tlon phenome;nﬁﬂ]. Fpur’Fh-ordgr dispersion terms, and consider the Raman and self-steepening effects,
may result in solitons with oscillating tail§2]. Self- we obtain[10—13
steepening causes the leading edge of a pulse to become
more shard1]. There are various works on “optical wave
breaking” as well. The inclusion of the Raman term results iy, +
in a continuous downward shift in pulse frequer8y-6]. In
the time domain, this represents the fact that the dlags- =ioy+ (| WP —is(||?)+ (iw—v) | ¢]*.
cal fibep response to the imposed field is not instantaneous. @)

This delay of a few femtosecondfs) can affect propagation

of fs signals. Gagnon and Belang&i showed that the exact  Here the term witts, which is the self-steepening coeffi-

form of the soliton self-frequency shift follows from a sym- cient, and that withrz, which is the Raman coefficient,

metry analysis of the equation. modify the complex Ginzburg-Landau equatif]. In the
Kink-type solutions for the NSE with Raman term presentCGLE, z is the normalized distancejs the retarded timey

were discovered if8]. In nonlinear optics, a kink is a shock s the normalized envelope of the optical fiefél,describes

wave which propagates undistorted in a dispersive nonlineahe gain spectrums is a constant gairfor loss if negativg

medium. Interestingly enough, when gain and loss terms arend € is a nonlinear gairjor two-photon absorption if nega-

added to the NSE with the Raman term, the kink solution cative). In general, some of these terms, which are additional to

still exist. In contrast to the NSE case, the front moves withthose in the nonlinear Schiimger equation, are needed in

a certain velocity which depends on the parameters of théhe analysis of soliton pulse propagation in optical fibers

equation. [2,14]. We seek a suitable ansatz which can be used to solve
In the present work we consider moving front solutionssome cases of the above equation. To do this, we first ana-

for the modified Ginzburg-Landau equation. We have devellyze the special case witi=e= u= =0, and then use the

oped a special technique to find the solution in analytic formsame functional form in more general cases.

which is based on energy and momentum balance equations

[9]. In order to do this, we use the ansatz which follows from Il ANSATZ

the point symmetry of the equation and use this ansatz in the

energy and balance equations. Allowing for nonzero velocity Appropriate transformations for finding solutions for

generalizes this ansatz to cover the case of moving frontghese types of equations can be formally described by con-

This technique allows us to find the coefficients of the solu-sidering the point-symmetry group of the equation. Each

tion in terms of the equation coefficients. We consider herdransformation then has an infinitesimal operator or generator

two examples which allow us to obtain the solution this way:associated with if15,16. Thus by settingy=U(t)e '?Z,

the CGLE with the Raman term and the CGLE with quinticand allowing for possible phase chirp by usind

D . .
§_|ﬁ)¢tt+|¢|2¢(1_|€)
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=F()exdi¢g(t)], with F and ¢ real, we obtain a complex We are interested in moving front solutions. Hence, we
equation. The real part is can allow for solutions to move with velocity by using

D t—y(t—Vz)
S[Fu=F o]+ F(F2+0) = 27(F?)F + sFo ¢y — vF®, T
in Eg. (9). In what follows, we prove that this form also

© gives the required solution. The real parameters of the solu-
while the imaginary part is tion (d, P, y, k, V, andQ) will be expressed in terms of the
equation parameter®(, B, €, 5, 7r, u, andv). To relate the
d ) 3 3s d 4 parameters, we will use an original technique of balance
a(F ¢t)=—6DSF Ft=—7Da(F ). (4) equations.
Equation(4) is nontrivial only ifs is nonzero. In that case, IV. SEGMENT ENERGY BALANCE
we have FOR FRONT SOLUTIONS

3s First we consider the balance equations in general form
¢t=—7D(F2)+c/F2, with all the coefficients in Eq(2) being nonzero. Let us

convert to the moving group velocity frame by settifig t
—Vz Then, using the ansatz

P({,7)=1(Hexdiz(KV-Q)],

we substitute it into Eq(2). The resulting equation is

wherec is a constant of integration. Thus

= 3SDJF2d fdt 5
¢——? t+c Ez ()

Then Eq.(3) transforms to D
if”—in’—(KV—Q)f+|f|2f+is(|f|2f )¢

OF +F3—F(sc—Q)=27x(F?)F B L
2t R t 2 ’ Ii5f+i,3f”+iE|f|2f+(i,u—V)|f|4f+TRf(|f|2)§.
(6) (10)
where By multiplying by f*, taking the complex conjugate, sub-
3 3 tracting the two expressions, and integrating ofewe find
22 _"p2 that
v V+ZSD1 4D). (7)
D B AV 3 4 v 2
We now letF=w. This converts Eq(6) to FWO-5 (1f[%)"+ ZS|f| - §|f|
D Dwy — 4 ,D
3V gy W0 0) = reww— w2 LT R N TS e
8
8 11)

We look for solutions with{ approaching zero at one end
(the low end, and approaching a nonzero constant at th
other (high) end. If we set the constantto zero, it is clear
that Eq.(8) can be solved using= P y[ 1+tanh{t)], where

P and y are constants. This is true because

éNhereW=Im(f’f*). This equation is a consequence of the
energy balance. We may set yt, and, for convenience, set
the lower and upper limits at 0 and respectively, both for
the evaluations on the left and the integrals on the right.
The Raman term only causes a frequency shift and not a
W, gain or loss of energy, so it does not affect the segment
— =y[1l—tanhyt)], energy balance equation for the front solutions. By using the
w , ) oo
above ansatz we can thus find the gain/loss contribution of
each term. For a moving front solution the net gain must be
zero. Following this procedure, the terms contain the inde-
pendent functiony, tanhg), tantf(y), and logcoshg)]. The
overall coefficient of each term must therefore be zero. In
this case the coefficients for the termmand logcoshg)] are
the same:

and then each term in E¢B) is of the form tanf(yt) for n
=0, 1, 2, or 3. We could equally well use the mirror image
function t— —t) for w.

Then

3sD 3sDP
¢=—— | wdt=— — [ yt+log cosliyt)].

2 5+2ePy+4uP2y2— B(k+dy)?=0. (12)

Therefore the suitable ansatz for stationary front solutions i%quating coefficients of tany we find
1,0: /p,y /1+tanh(yt)e‘d log coshjyt)eikt—iﬂz7 (9) D(k+dy)—V=2[3(d2y+2k _%7)

whered andk are constants. —2eP—6uP?y—3sPy, (13
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while equating those for taify) we obtain

4(Dd+ uP?) = B(4d?>—3)—6sP. (14

V. SEGMENT MOMENTUM BALANCE
FOR FRONT SOLUTIONS

On the other hand, by multiplying E¢LO) by f* ', taking
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2

Y 3 P
no=ka—pg Z(Zdy+3k)+k +TR§ v,

2

ny=kh,+a(k+dy)— B(k+3dy) 7—+k2

n,=khs+h,(k+dy)+ady— Bh,— 7sP >3,

the complex conjugate, and adding the two expressions, we

find that
D 1
—(kv—Q)(|f|2)'+g(lf’lz)’+§(|fl4)
_ _ 6
—25W 3d§<|f|) 2Ws
+Hip(FE =

(|f|2)

f*”f’)+26|f|2W+2,u|f|4W

d 2
d_§(|f|2)> : (15

+TR
By integrating with respect tg we find
D 1 v
_ 20 1§12 1§14 6
(Q=kV) |12+ |12+ 51|+ 2 (I1])
=2fWg(g)d§—2,8 Im f frf*rdg
d 2
. 2
wraf (g 0110 02, 1

where

g(§)=5+6lflz+ﬂlf|4—s—(|f|2)

This equation is the result of the balance of momentum.

We now represent the complex functibrising Eq.(9) in

the form which allows for nonzero velocity. This leads to

five momentum balance equations:

No+n,+n,=0, (17)
ni+n3=0, (18

y(Q—kV)+ %y 2kdy+k?— yzz +Py?
+vP?y3+2(ny+n,) =0, (19)

2

1
—'y( d?y?+2kdy— 2]+ 5Py?+vP?y%+n;=0,

4] 2
(20
and
1\/3D
d2+Z ——2pd +vP?+2dP(uP+s)+Prg=0,
(21)
where

ng=hgz(k+dy)+dyh,— ghs,
and
1 P
n,=dyh;—Bdy? d2—|—4—1 TRy Y3,

The coefficients used in the above equations are
a=d6+Pylety(uP-s)],
h,=Py[e+2yuP],

h3=Py’[uP+s],

) ]
_ 2 7 2 1
h4_3y[d<k 4)+7k d 4)_,
and
3 1\]
.2 2_ 2 2_ =
hg=1y dy(d 7 +k|{ 3d 4)_.

These equations allow us to find the coefficients of the solu-
tion in terms of the coefficients of the fundamental equation.
Henceforth, we ses=0, but of course, this restriction is not
necessary when seeking other types of solutions.

VI. EXAMPLE 1:
MOVING RAMAN FRONT SOLUTIONS

As an example, let us consider moving Raman front soli-
ton solutions. Thus we set=v=s=0, but take rr#0.
Equation(2) then becomes

i, +

Bt 9P p(1—ie)=ioy+ mrp(|4]*)
(22

By using the solution of forn{9), we can equate coeffi-
cients of the powers of tapf(t—V2] and find the required
constants. We obtain

_ D+ \D?+3p?
2B '
which is clearly real, and
P=(2B8d—3D/8+d?D/2)/ 7.
For convenience, we now define
2

r=P(1+2ed)/(1+4d?) anda;=3p/4+dD/2+ — 165"
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D
b= ( d_ﬁ) 2¢P andc,=r%/B—é. 0.2 (a)
0.18
Then
=0.16
y=[—b;= Vb —4a;c,]/(2a;) —
0.14
and
0.12
o[r-77]/
0.1 0.2 c 0.3 0.4 0.5
The only restriction is thaty must be real, i.e.bf>4alcl.
The velocity is 7
V=2eP+k(D—4Bd)— y(B+dD).
o~ 65
Finally, the frequency shift is T;_
a6
D Dk o
Q= PTR-l-——Bd +k ——ﬁ’y)

These formulas can be used to present the relation betwee
the equation and solution parameters in a simple way. Fron
Eq. (9) we see that whehchanges from-1/2y to 1/2y, the
front intensity increases from 0.269 of its maximum to 0.731
of its maximum. We thus define the “width” of the front to
be 1/y|. In fact, att=—1/y, the intensity is 0.12 of its
maximum, while at=1/y, it is 0.88 of its maximum.

One example, giving the Raman kink width, height, and
velocity versuse for a given set of parameters, is shown in
Fig. 1. Other dependencies of the soliton parameters versu
parameters of the equation can also be presented on simile
plots.

The stationary Y =0) kink solution, obtained ifi8], is a
limit of this solution wheng,e—0 andD>0. Then most
solution coefficients are zero, but

-3 -9D
y= 7 and Q= B2 FIG. 1. () The width(as defined in text (b) the height, andc)
R R

the velocity of the kink solution of Eq22) as a function of. The

. parameters of the equation are given in the diagrams.
Thus the above solution reduces to

y=myD {1~ tant(2mt)e?m’Pz p— \/( Bd?—dD— Zﬂ) / "
=myDe ™/sectizmt)e? ™z, (23

wherem= —3/4rg, in agreement with8].

We now introduce

)
VII. EXAMPLE 2: 9= *+2pd,
FRONT SOLUTION FOR QUINTIC EQUATION
We now consider the front solution for the quintic equa—Where
tion, i.e., we takes= 7r=0 butu,v+# 0. A Painleve analysis vt 2ud
of the equation for this situation has been presentdd Th r,=8P2 -~ _p,
We defineb,=(Dv+28u)/(28v—Du). Then 1+4d

3 grp
d=b,* \/b2+— :—ﬁ+dD 3uP?+=—= 25"

and and
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r ry Now V—kD can be written in terms of the equation param-
b3=’E g+ 7| —2¢€P, eters. The consistency condition is
. , . . . 3 c
wherer is as defined in the preceding section. Then 5= dDy2+ P Ca__ , 26
2 2 C3
=— | —bs* \/b2+4a 5— —)
7" 2a, ’ 3R B where
and 5d (2 d N 1
Co=z0—¢€ VvV — -1
k= Zr +r B C 2 4
- 4 2 ,
and
and the velocity is now
1
V=2eP+k(D—48d)— y(B+dD—4uP?), c3=5d%+ 2v—+2].

while the frequency offset is
For example, we can speciy, €, v, andu and then use
Eq. (26) to find 8. Then, withV as anarbitrary velocity, we

have
Cz
V+2P — D,
C3

with Q given by Eq.(24) (with 8=0). Thus moving front
solutions exist even when the Raman term is absent.

9:72<E—,8d—vP2) —y(P+ Bk)+ Ek2 (24)
8 27

The actual solutions in these two sections satisfy both the
energy[Egs. (12)-(14)] and momentun{Egs. (17)—(21)] k=
balance equations.

B=0 solution family

As pointed out in[17], when 8=0, there is a one-
parameter family of solutions, as long as a consistency con-
dition relating the equation parameters is satisfied. This so-
lution has the same functional form as that above, with We have found moving-front-type solitons of the ex-
solution parameters simplifying to tended CGLE. We have used the novel energy and momen-

tum segment balance equations for analytical calculations.

by=—vlp This method shows clearly the contribution of each term to
the overall physical balance. In particular, the weighted

losses and gains must add to zero for a valid front solution.

P2=—dD/pu. The method allows us to find soliton solutions in a number of
cases. In this paper we considered only particular cases of

Furthermore, kinks for the equation with the Raman term and for the quin-

tic CGLE. Other types of solutiong.g., pulsesand solu-
_ 4Pu 1+2de (25) tions for the equation with other terms can be found in a
YD 8vd+u(1+20d2)° similar fashion.

VIIl. CONCLUSION

and
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